Contribution from the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506

The Crystal and Molecular Structure of Tris(acetylacetonato)aquoytterbium(III) Hemibenzene¹

BY EDWARD D. WATKINS, II, JAMES A. CUNNINGHAM, THEODORE PHILLIPS, II, DONALD E. SANDS,² and WILLIAM F. WAGNER

Received June 13, 1968

The crystal structure of tris(acetylacetonato)aquoytterbium(III) hemibenzene, $Vb(C_5H_7O_2)_8(H_2O) \cdot 0.5C_8H_6$, has been determined from three-dimensional X-ray diffraction data. Two formula units are contained in a triclinic unit cell of space group PI and dimensions $a = 8.728 \pm 0.009$ Å, $b = 8.435 \pm 0.009$ Å, $c = 15.623 \pm 0.016$ Å, $\alpha = 95.95 \pm 0.02^{\circ}$, $\beta = 107.72 \pm 0.09^{\circ}$, and $\gamma = 96.18 \pm 0.09^{\circ}$. A total of 2625 intensities above background were collected by counter methods. The structure was refined by least-squares methods to a conventional *R* factor of 0.080; during the final cycle of refinement, corrections for anomalous dispersion were included. The ytterbium atom is surrounded by seven oxygen atoms at the vertices of a capped trigonal prism. These tris(acetylacetonato)aquoytterbium(III) molecules are linked in pairs by hydrogen bonds. The benzene molecule occupies a center of symmetry; all of the intermolecular contacts involving benzene carbon atoms and acetylacetonate carbon or oxygen atoms exceed 3.5 Å.

Introduction

The preceding paper described the structure of Yb-($C_{\delta}H_7O_2$)₈(H₂O).³ In the course of preparing and studying the hydrates, it was observed that the crystals recovered from a solution of Yb($C_{\delta}H_7O_2$)₈·3H₂O in benzene or acetone contained one molecule of the solvent for two molecules of Yb($C_{\delta}H_7O_2$)₈(H₂O).⁴ The infrared spectra of these solvates differed from the spectrum of the monohydrate only in the appearance of additional bands characteristic of the solvent molecule. Interest in the possible effect of crystal packing on the molecular geometry prompted the determination of the structure of this benzene solvate.

Experimental Section

Crystals of Yb(C₆H₇O₂)₈(H₂O) $\cdot 0.5C_6H_6$ were prepared by Dr. Richardson.⁴ A crystal of dimensions $0.28 \times 0.23 \times 0.20$ mm was sealed in a glass capillary with the 0.28-mm dimension parallel to the capillary, and approximate unit cell dimensions and the diffraction symmetry were obtained from oscillation, Weissenberg, and precession photographs. Accurate unit cell dimensions and the intensity data were measured on a General Electric X-ray spectrometer equipped with a single-crystal orienter and a scintillation counter. The crystals are triclinic with dimensions (based on Mo K α = 0.7107 Å) a = 8.728 ± 0.009 Å, b = 8.435 ± 0.009 Å, c = 15.623 ± 0.016 Å, α = 95.95 ± 0.02°, β = 107.72 ± 0.09°, and γ = 96.18 ± 0.09°. The long dimension of the crystal was parallel to a. With two molecules of Yb-(C₆H₇O₂)₈(H₂O) $\cdot 0.5C_6H_6$ per unit cell the calculated density is 1.62 g cm⁻³.

The intensities were measured manually by the stationarycrystal, stationary-counter technique using Mo K α radiation and 40-sec counts. The crystal was oriented about a^* , and the settings were calculated for the K α_1 line (λ 0.70930 Å). Conversion of peak heights to integrated intensities were based upon several intensities measured by a manual ω scan. Background corrections were obtained by computer interpolation of a plot of intensity vs. angle, constructed from measurements made with the crystal out of reflecting position. No corrections were made for absorption ($\mu = 45.9 \text{ cm}^{-1}$) or extinction. The estimated maximum variation in the ratio of any two intensities due to absorption is 10.5%.

It was initially planned to measure all reflections for which 2θ was less than 50°. However, problems in electronic stability which arose during the measurements indicated the advisability of completing the data collection as soon as possible, so the maximum 2θ was decreased to 35° . A total of 2963 reflections were measured, and these included about 60% of the accessible reflections between 35 and 50°. Of the measured reflections, 2625 were at least 7% above background and were classified as observed. The variation in the reflected beam intensity was 32%.

Structure Determination and Refinement

Space group $\overline{\text{PI}}$ was assumed and was ultimately confirmed by the structure. Trial ytterbium positions were deduced from the three-dimensional Patterson function. Further interpretation of the Patterson function was not feasible. The ytterbium atoms occupy the $\overline{\text{PI}}$ general positions $2(i): \pm (x, y, z)$ with x = 0.012, y = 0.190, z = 0.165. The ytterbium contributions to the structure factors were calculated, and a difference Fourier synthesis was computed using the 2539 reflections for which $|F_o| \ge 0.40|F_o|$. This difference Fourier map revealed the positions of the seven oxygen atoms. Two additional difference Fourier maps were required before all of the carbon atoms were located.

Least-squares refinements were carried out using a local IBM 360 adaptation of the program of Busing, Martin, and Levy.⁵ The refinements included one scale factor, the positional parameters for one ytterbium atom, seven oxygen atoms, and eighteen carbon atoms, anisotropic temperature factors for the ytterbium atom, and isotropic temperature factors for the oxygen and carbon atoms. The atomic form factors used were those of Cromer, Larson, and Waber⁶ for neutral ytterbium and from the compilation of Ibers⁷ for oxy-

⁽¹⁾ Work supported by U. S. Atomic Energy Commission Contract No. AT(40-1)2124. We also thank the University of Kentucky Computing Center.

⁽²⁾ Author to whom correspondence should be addressed.

⁽³⁾ J. A. Cunningham, D. E. Sands, W. F. Wagner, and M. F. Richardson, *Inorg. Chem.*, 8, 22 (1969).

⁽⁴⁾ M. F. Richardson, Ph.D. Dissertation, University of Kentucky, 1967.

⁽⁵⁾ W. R. Busing, K. O. Martin, and H. A. Levy, "ORFLS, a Fortran Crystallographic Least-Squares Program," ORNL-TM-305, 1962.
(6) D. T. Cromer, A. C. Larson, and J. T. Waber, Acta Cryst., 17, 1044

^{(1964).}

^{(7) &}quot;International Tables for X-Ray Crystallography," Vol. III, The Kynoch Press, Birmingham, England, 1962, p 202.

MA	GNIT	UDE	s of	Obsei	RVED	AND (CALCI	ULATE) Ste	UCTURE	E FA	CTOF	RS F	or (BSEF	VED	DAT	r a , 1	Eace	ı Mu	LTIP	LIED	вү	10	[10 <i>F</i>	(000)) =	46	80
×	L FO He C D 232	[FC] 220	к L	ro rc	к L 2 б	FO FO	K L	F0 (FC	-2-10	ro [rc]	- 6	. FO		K L	FO (FO	c1 × 1 ₽.	L PO]#c 142	к L -3 -7	FO (FO	-3	L FO	FC 425	к с	.; FO	rc 18	к L 2 1	F0 125	FG 15
3547	0 348 0 380 0 171 0 136	355 380 180 150	-1 1 -2 1 -3 1 -4 1	257 260 186 200 54 75 175 180	4 6 5 6 6 6	19 36 249 263 110 128 56 56	-6 -3 -7 -3 -8 -3 0 -4	140 180 54 62 96 126 229 229	1-1 2-1 -1-1 -2-1	121 116 67 61 83 75 77 71	-9 -1 -1	5 66 176 565	96 187 563 351	-4-10 -9-10 -7-10 0 11	212 22 151 17 57 71 66 66	7 2	-2 548 -2 280 -2 330 -2 144	542 267 332 125	1 B 2 B 3 B 4 B	296 272 63 54 193 181 137 134		0 251 0 279 1 226 1 314	247 295 219 310	6 - 6 7 - 6 8 - 1	348 117 78 542	10 113 82 478	7 1 -1 1 -2 1 -3 1	87 465 325 212	87 443 274 213
8 0 1 2	0 117 1 509 1 617 1 727	128 558 648 741	-5 [1 -6 [1 -7 1] 0 12	131 153 132 121 111 123 284 264	-2 6 -3 6 -4 8	436 447 353 382 34 35 341 345	1 -4 2 -4 3 -4	614 603 21 29 229 224 75 69	0~10 2-10 0	53 47 135 111 - 2 454 448		457 20J 144 166	427 202 114 167	1 11 2 11 3 11 4 11	204 180 82 70 107 104 124 104		2 136 2 145 2 61 2 425	140 151 60 435	6 B -1 8 -2 8 -3 B	87 84 254 242 288 270 47 44	2	1 315 1 137 1 206 1 107	304 131 186 103	-2 -6	72 341 173 167	86 369 168 134		316 39 392 445	317 16 379 444
345	1 219 1 432 1 234 1 92	228 424 227 114	1 12 2 12 3 12 4 12	160 176 62 73 162 149 27 37	-7 6 -7 7	73 74 164 179 147 175 427 414 207 289	5 _4 6 -4 7 _4 8 _4	126 121 296 283 58 51 105 113	2 0 0 0	432 413 429 416 125 120 276 263	1 1 1 1 1	380 204 193	361 219 211 -	-2 11	163 155 331 312 116 114		-2 317 -2 596 -2 379 -2 6V	257 514 365 48	-4 8 -5 8 -6 8	221 244 160 154 49 65 204 219	-1	1 56 1 98 1 376 1 251	50 114 366 223	2 7	186 193	81 191 206 115	2 -1 J -1 4 -1 5 +1	158 347 176 94	136 351 178 77
9 -1 -2	1 32 1 61 1 814 1 142	56 74 866 138	-1 12 -1 12 -2 12 -3 12	48 53 47 46 205 219 117 144	273747	335 329 81 73 223 211 172 173	-1 -4 -2 -4 -3 -4 -4 -4	222 230 319 345 239 263 292 295	6 G 7 G - 1 G	61 56 96 111 113 125 160 171		259 JA 34 55 428	254 58 87 414	-7 11 0-11 1-11 2-11	99 123 47 2 304 284 233 224		3 496 99 C 3 396 3 258 C	453 43 344 199	1 -8 2 -8 3 -8 4 -8	469 490 335 331 188 172 351 311		1 372 1 37 1 275 1 251	376 24 278 262	-1 7	200	241 114 237 233	7 -1 -1 -1 -2 -1 -3 -1	215 432 236	21 198 426 212
	1 386 1 392 1 76 1 279	42) 396 89 290	-4 12 -5 12 -7 12 -8 12	52 58 215 218 97 111 53 82	6 7 7 7 -1 7 -4 7	29 42 73 75 324 332 25 59	-5 -4 -6 -4 -7 -4 -5 -4	192 197 68 66 136 164 77 111		322 311 546 594 82 74 310 293		222 2 201 2 247 2 28	225 261 253 37	3-11 4-11 6-11 7-11	123 117 253 237 153 154 132 123		3 103 3 193 3 50	106 192 72 92	5 -8 6 -8 7 -8	64 70 153 154 118 124 30 45	2 -	1 32) 1 58 1 465 1 254	312 52 454 251	-7 7	159 82 87 314	96 96 86 314	-4 -1	205 222 328 322	207 248 307 313
-9	1 99 1 90 2 372 2 811	123 89 409 873	2 13 3 13 4 13 5 13	61 76 61 76 82 71 81 70	-4 7 -5 7 -6 7	274 274 142 156 252 283 101 112	0 -5 1 -5 2 -5	221 228 459 461 310 344 184 187	-7 0 0 1 1 1	40 53 243 246 144 152 576 542	-1 6 -2 6	98 60 142 344	126 53 136 352	-2-11 -3-11 -4-11	217 229 116 113 193 217 68 70		3 183 3 253 3 670 3 23	144 239 549	-2 -8	303 292 140 114 252 261	-	205	167 70 178	2 -7	335 335 304	51 316 87 179	32	248 141 107 121	240 122 117 137
2	2 392 2 244 2 480 2 77	395 249 513 69	-1 13 -5 13 -6 13 0 14	261 247 107 113 86 112 30 33	-97 08 15 28	77 101 151 125 345 331 160 143	4 -5 5 -5 6 -5 7 -5	296 261 242 251 137 121 188 187	3 1	15 6 230 198 151 144 137 150		392 4 33 226 2 45	402 · 23 238 60	-7-11 0 12 1 12 2 12	67 67 200 173 104 95 73 63		3 365 3 196 3 100 3 136	323 201 119 141	29	329 312 124 114 155 155 162 171	1100	1 150	138 314 277 188	6 -7 8 -7 -1 -7 -2 -7	174 114 19 402	10	-2 2 2	128 505 86 263	120 120 77 240
-1 -2	2 96 2 95 2 354 2 611	98 92 360 605	2 14	103 110 58 70 110 106	4 8 6 8 7 8 -1 6	193 186 182 135 42 52 324 317	-1 -5	237 251 108 128 188 197 284 290	-1 1 -2 1 -3 1	61 78 722 645 174 167 805 450	-0 -0 - 0 - 2 -0	152 1 393 4 120 1	168 408 143 476	9 L2 -4 12 -5 12 -7 12	58 55 98 100 150 167 70 84	1 - 2 - 3 -	3 72 3 549 4 196	46 543 173 109	6 9 -1 9 -2 9 -3 9	49 51 104 103 125 124 244 235	2	2 54 2 261 2 93 2 77	46 228 79 86		93 204 130 207	98 178 108 201	-0 -2 	78 77 407 299	87 61 403 280
-3	2 227 2 489 2 258 2 104	224 488 273 110	-5 14 -7 14 0 15 1 15	25 35 68 91 153 150 108 101	-2 8 -3 8 -4 8 -5 8	278 274 83 86 285 303 100 93	-5 -5 -6 -5 -7 -5 -9 -5	54 74 176 187 91 101 49 90	-6 1	416 412 163 130 127 139 53 49	4 5 6 7 6 7 6	402 3 149 1	137 375 151 134	0-12 1-12 2-12 3-12	243 245 20 20 252 261 159 147		3 200 3 52 3 14J 3 107	251 39 142 110		77 84 251 253 117 113 109 100	-1	2 137 2 32 2 34 2 353	147 29 45 307	-1 8	174 96 65 301	174	3 -2 4 -2 5 -2 6 ~2	129 257 56 125	109 261 73 134
-9	2 72 72 3 443 3 102 3 417	90 496 82 416	3 15 4 15 -5 15 0 16	37 38 37 122 33 47 116 127 115 96	-7 8 -9 8	207 223 54 57 67 81 338 322	1 -6 2 -6 3 -6 4 -5	136 144 498 486 238 658 137 122	2 -1 3 -1 4 -1 5 -1	214 177 409 386 296 281 139 135	-1 -2 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	198 1 196 2 382 4 72	177 203 407 37	5-12 7-12 8-12 -1-12	129 132 173 153 79 98 217 248	-2 -	3 414 3 401 3 602 3 42	472 365 481 36	0 -9 1 -0 2 -9 3 -9	389 356 63 64 546 527 131 114	777	2 187 2 330 2 280 2 52	150 301 267 65	-4 6	247 167 156 326	233	-1 -2 -3 -2 -4 -2	409 223 329 20	445 198 315 27
	562 3250 3293 3101	614 266 297 107	2 16 -1 16 1 17 -1 17	112 110 102 89 86 81 123 106	199	171 156 113 103 170 143 30 54	5 -6 7 -6 5 -8	354 342 147 143 130 118 97 90	6 -1 7 -1 8 -1 9 -1	196 180 29 25 100 118 59 78		259 2 146 1 -98 1 44	239 124 108 45	-2-12	63 66 197 196 38 67 54 69	-0-1	3 331 3 229 4 248 4 302	310 229 241 300	4 -9 5 -9 7 -9	171 166 214 206 156 141 81 56	2 -	2 67 2 320 2 619 2 187	76 303 604 179	2 - 6 3 - 6 6 - 6	283	285	0 J 2 J 2 J	245 73 206 232	329 72 202 216
8 -1 -2	3 121 3 121 3 51 3 657 3 286	57 133 51 699 319	5 -4 6 -5 7 -6	57 62 170 168 172 191 133 145 195 422	6 9 -1 9 -2 9 -3 9	123 122 62 67 40 36 367 362 176 165	-2 -6	208 221 324 373 35 25 187 183	-2 -1	433 424 75 59 481 459 345 349	17	104 1 181 1 7 316 2 57 192 1	166 194 197	0 13 1 13 2 13 4 13	143 132 40 52 136 119 56 54	3	4 79 4 236 4 111	84 814 107 76	-2 -9	296 263 113 80 318 364 142 155	,	2 117 2 117 2 118 2 115 2 115	119 120 125	-1 -8	317 207 122 232	321 201 120	6 3 · 7 3	170 40 33 266	46 50 257
-6 -7	172 365 149 138	177 358 156 142	3 -7 6 -7 1 -8 3 -8	096 416 08 225 08 327 69 88	-4 9 -5 9 -6 9 -7 9	82 93 234 266 103 96 84 109	-6 -6 -8 -6 0 -7 1 -7	114 111 82 97 189 214 327 383		46 25 152 151 132 141 545 534	-1 7	163 8 38 63 375 3	642 - 77 160	6 13 0-13 1-13	73 66 123 129 238 266 176 174	-1 -2 -3	4 74 4 560 4 316 4 341	81 827 294 309	1 10 2 10 4 10 5 10	97 108 200 174 119 121 54 - 64	111	2 378 2 305 2 450 2 42	303 273 454 17	2 2 9	216 67 154 123	216 64 154 123	-2 3	315 372 31 233	291 380 16 227
-8	3 131 397 199 391	150 388 202 413	9 -8 4 -9 8 -9 6-14	41 72 54 63 84 65 65 74	010	136 148 225 205 72 81 174 149	3 -7	132 102 517 508 210 197 119 116	3 2	105 178 43 39		237 2 127 1 198 2		3-13 4-13 5+13	236 208 57 61 140 134		4 105	104 201 133	-5 10	205 241 164 155 98 100 184 175 91 102	-0-	2 181 3 390 3 88 3 276 3 134	374 61 265		9 82 9 157 9 277 9 31 9 177	75 154 255 27 187	-7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -	79 129 404 34	81 153 397
5 6 7	209 188 19	306 179 34 152	0 0 0	62 1022 86 260 76 174 38 317	-1 10 -2 10 -3 10	103 117 307 303 79 97 226 212	7 -7 8 -7 9 -7 -1 -7	4.3 48 112 106 65 74 231 255	7 2 8 2 -1 2	41 53 55 70 44 66 521 462		83 1 78 1 233 2 052 5	107 - 101 - 140 -	-3-13 -3-13 -4-13	183 172 65 81 45 65 96 104		4 647 4 647 4 595 4 115	65 632 593 120	0-10 1-10 2-10 3-10	323 294 274 234 233 201 316 301	;	3 94 3 169 3 37 3 43	93 168 58 43	-7 -9	76 69 265	100	2 - 3 3 - 3 4 - 3 5 - 3	413 265 207 169	415 275 194
-1 -2 -	40 530 122	63 52 576 120	4 0 5 0 6 0 7 0	48 30 103 120	-6 10 -6 10 -8 10	179 191 130 124 211 218 99 112	-2 -7 -3 -7 -4 -7 -5 -7	328 357 150 136 237 232 111 105	-2 2	526 508 269 249 332 303 240 250	2 -7	77 463 4 224 2 134 1	00 37 10 21 -	2 14 2 14 3 14	127 112 44 40 31 40 152 143		4 320 4 228 4 157 4 211	300 232 185 201	4-10 5-10 6-10 8+10	78 61	11.1	3 208 3 350 3 367 3 29 3 29	204 343 343	2 -9	90 1446 215	87 193 206	7 -3 8 -3 -1 -3 -2 -3	55 364 160	124 69 406 155
-4 4 -6 4 -7 4	183 308 57	180 308 75 139	-2 0 3	134 297 134 297 117 399	1 11 2.11 3 11 4 11	219 184 75 78 101 111 114 100	-8 -7 0 -8 1 -8 2 -8	22 39 123 131 404 482 286 339	-7 2 0 -2 1 -2 2 -2	151 173 229 217 487 462 397 387	8 -7 9 -7 -1 -7 -2 -7	112 1 39 229 2 390 4	12 - 55 20	6 14 1-14 4-14 6-14	72 75 196 208 192 176 166 153		4 61 4 79 4 848 4 75		-2-10 -3-10 -4-10 0 11	362 331 152 145 99 124 56 72		3 211 3 93 3 129 3 460	222 107 157 445	6 - 9 - 1 - 9 - 2 - 9 - 2 - 9	95 203 153 232	54 213 133 256		136	127 179 84 189
0	121 163 194 178	133 · 150 · 249 · 150	-7 C	10 218 05 115 23 139 75 177	6 11 -1 11 -2 11 -3 11	47 63 219 195 205 197 62 63	J -8 4 -8 5 -8 6 -8	60 50 321 303 128 113 142 126	3 -2 4 -2 5 -2 6 -2	193 193 421 381 163 195 149 171	-3 -7	282 2 196 1 196 1 62	26 - 78 - 92 -	7-14	83 73 189 182 94 90 57 64	10-	4 373 306 5 276 5 474	342 209 313 495	111 211 311 411	26 33 100 100 96 100		3 60 3 563 3 331 3 153 3 282	54 548 330 156 202	-4 -9	104 99 122 147	106	2 4 4 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	207 202 51 37	246 201 68 59
34567	302 36 159 89	317 46 171 94	2 1 0	16 139 12 300 63 161	-5 11 -6 11 -7 11	130 128 106 103 110 126 257 236	9 -8 -1 -8 -4 -5 -3 -5	80 77 344 382 233 428 206 203	9 -8 -1 -2 -2 -2 -3 -2	51 71 550 534 154 136 623 549	-8 -7 0 8 1 8 2 8	44 1 188 1 317 3 100 1	545 73 114 -	0 15	99 96 68 63 20 21 110 107	3 4 1	245 167 59	245 135 76		849 241 86 109 42 71 129 185	7	3 34 3 115 3 83 3 83 3 83	38 121 90 481	-1 10	215 145 129 303	209 152 159 274	-3 4	110 331 245 32	99 291 260 44
8 9 5 - 1 9 - 2	28 43 393 440	46 67 432 468	6 1 1 7 1 1 8 1 9 1	65 188 71 182 27 52 58 72	1 12 2 12 3 12 5 12	105 86 43 62 146 138 75 75	-4 -8 -6 -6 -7 -8 -8 -8	106 202 101 98 75 79 29 60	-5 -2	259 241 25 8 270 281 461 476	3 8 6 8 7 8	153 i. 164 i 136 i 54 i	39 75 41 50 -	0-15 1-15 5-15	147 109 30 40 170 154 146 130		5 364 5 60 5 335	822 380 61 301	0-11 1-11 2-11 3-11	30 17 263 237 152 139 169 179		3 216 3 407 3 185 3 269	201 350 158 266	2-10 3-10 5-10	246 138 236 206	229 139 230 187	-7 4 -7 4 -8 4 0 -4	236 112 47 405 762	236 65 411 375
-4 5	435 141 196 127	479 129 199	2 1	19 469 50 456 57 343 38 235	-5 12 -7 12 -8 12 0 13	203 189 72 96 74 94 160 146	1 -9 2 -9 3 -9 4 -9	66 62 335 364 311 337 71 89	2 3 3 3 4 3 5 3	477 432 297 290 26 36 187 177	-2 8	296 2 213 2 78 147 1	48) - 97 - 48	0 10	53 66 93 75 183 81 147 134	-6 -7 -9	5 92 5 195 5 57 5 37	95 202 64 22	-11 7-11 -11	147 147 98 103 26 33 248 221	1 2 3	4 204 4 232 4 245 4 53	108 221 220 72	8-10 -1-10 -2-10 -3-10	94 37 331 77	99 28 330 70		86 408 40 127	89 405 20 135
0 6 2 6 3 6	188 206 275	430 · 205 · 224 273	91	57 71 99 119 83 189 33 754	1 13	53 78 144-135 43 58 74 70	5 -9 7 -9 8 -9 -1 -9	215 226 110 96 90 95 255 265	6 3 7 3 8 3 -1 3	76 64 63 90 80 102 193 194	-7 8 8	202 2 63 75 226 2 47	84 - 85 -	1-16 4-16 2-16 3-16	115 115 87 83 89 96 74 71	2 - 1	400 400 92 375	445 396 48 337	-2-11 -3-11 0 12 1 12	318 307 60 67 170 149 80 71	4	4 173 4 59 4 51 4 60	178 69 72 71	3 11	85 95	75 95 103		90 90 395 243	33 98 84 410 187
* 0 5 6 6 6 8 6	212 139 65	228 149 85 483	2 2 1 3 2 1 4 2 1 5 2 1 6 2 2	20 133 150 323 127 324 23 119 126 233	-1 13 -5 13 -6 13	198 194 86 110 97 109 149 138	-3 -9	274 284 105 133 111 113 69 85	-3 3 -4 3 -5 3 -6 3	530 482 74 56 384 371 190 204	2345	371 3 149 1 337 3 151 1	67 51 - 39	2-17 1-17 2-17 0-18	34 58 66 72 81 83 58 51	e -1 7 -1 9 -1	5 120 5 134 5 49	123 130 68 530	3 12 -4 12 -5 12	121 104 78 83 143 165 48 55		4 124 4 371 4 250 4 21	130 329 247 57	-5 11 -6 11 1~11 2-11	07 71 225 63	65 215 61		275 325 176 245	234 294 164 256
-3 6 -4 6 -6 6	306 186 44 126	329 187 33 140	7 2 8 2 9 2	89 93 57 69 62 79 58 53	2 14 3 14 4 14 -1 14	68 73 57 68 74 84 160 154	0-10 3-10 4-10 5-10	246 292 313 346 146 182 90 104	-8 3 0 -3 1 -3 2 -3	148 157 693 641 77 48 312 316	4 +8 7 -8 9 -8 -1 -8	180 1 153 1 86 429 4	74 48 92 -	1-18 2-18 1-18 Ma	40 44 133 127 66 69 3	4546	443 313 440 42	405	-7 12 0-12 1-12 2-12	84 90 167 148 30 64 262 256		4 9267 4 131 4 56 4 86 4 86	270 141 67 105	3-11 4-11 6-11 7-11	197 214 142 92	190 186 136 88	2 5 5 6 5 6	101 140 111 81	92 159 91 82
07 17 27 37	238 238 384 62 214	279 415 47 233	3 2 1	07 92 63 463 43 255 29 52	1 15 2 15 3 15 -5 15	78 72 24 51 104 98 121 118	8-10 -1-10 -2-10 -3-10	92 70 67 60 241 226 113 119	3 - 3 4 - 3 6 - 3 7 - 3	335 326 146 129 345 335 91 54 132 133	1711	255 2 269 2 19 132 1	12 77 . 8	101	41 33 427 425 345 345 82 69	1010	406 205 257 212	409 202 238 207	4-12 5-12 7-12 8-12	197 189 124 103 131 133 76 72	2 -	4 534 4 34 4 404 4 156	507 82 394 142	-2-11 -3-11 0 12 1 12	246 87 146 34	88 133 43		20 277 193	310 17 266 201
5 7 7 7 8 7 -1 7	166 102 27 161	161 117 - 35 176	7 2 1	37 170 49 68 13 502 67 48	0 16 1 16 -1 16 -1 17	92 92 30 47 95 94 100 86	-4-10 -5-10 -7-10 0-11	134 145 146 166 79 75 52 57	e -3 -; -3 -2 -3 -4 -3	113 115 459 467 269 274 36 41	-7 -8 0 9 1 9 2 9	65 / 321 3 156 11 131 11	82 15 53 25	5 0 1 6 0 7 0 1 5 0	74 84 111 127 70 82	5 6 7 6 -1 6	194 60 60 187	185 71 60 170	-1-12 -2-12 -6-12 0 13	201 144 40 57 89 109 120 109	6 - 6 - -1	4 134 185 4 90 4 112 4 97	169 89 80	2 12 -5 12 -6 12 0-12	100	64 57 64 54	-7 5 -5 -5 1 -5	172 65 72 340 210	179 79 52 352 245
-2 7 -4 7 -8 7 -9 7	235 230 84 95	256 253 108 94	2 3 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	04 626 61 128 24 186 90 75	-2 17 1 -1 2 -1 2 -1	511 481 556 654 346 309 381 369	2-11 3-11 4-11 5-11	227 233 87 101 177 187 88 122	-6 -3	296 287 207 129 286 280 475 467 346 351	3999	98 73 55 1	91 - 73 - 69 - 52 -	202	24 30 268 355	177777	400 238 96 96 72	377 229 123 97	2 13 -1 13 -5 13 -4 13	133 120 124 121 79 79 110 121	1110	4 212 4 287 4 326 5 271	173 265 285 279	2-12 3-12 4-12 5-12	240 84 143 157	76 76 21 38	3 - 5	251 262 43 112	293 243 53 117
0 8 1 8 2 6 3 6	70 376 172 151	33 373 160	7 3	50 68 95 105 77 267 112 331	4 -1 5 -1 6 -1 8 -1	335 323 149 150 244 241 107 131	6-11 7-11 -1-11 -2-11	120 147 131 127 278 274 88 84	3 4 4 5 4 6	19 7 245 232 165 181 45 60		202 1 106 1 275 2 109 1	95 - 14 74 11 -	6 0 1 0 1 1 1 4 2 1 1	40 151 78 90 817 221 93 383		134 648 634 207	40 40 434 204	0-13 1-13 2-13 3-13	180 171 127 94 131 111 262 226	2	5 291 5 96 5 173 5 108	289 112 157 96 81	7-12	106 226 62 64	191 - 70 - 63 -	7 -5	82 493 - 214 - 207 531	467 242 203 378
4 8 5 8 7 8	214 36 116 57	247 74 119 67	-4 3	171 483 54 37 156 361 76 205	-1 -1 -2 -1 -3 -1	76 81 366 321 336 514 77 74 451 444	-3-11 -4-11 -6-11 -7-11	42 52 182 200 59 78 49 64 301 278	-1 4 -2 4 -3 4	104 107 550 529 259 238 340 340 341 321	-8 9 0 -9 1 -9 2 -9	124 14 376 31 63 5	45 -	4 1 4 5 1 1 6 1 1 7 1 1	136 219 142 120 116 127 132 144	5 -6 -6	93 93 111 79	274 103 114	5A13 6-13 -5-13	122 124 120 107 87 96 105 91	-1	5 95 5 145 5 356 5 40	108 136 343	2-13 3-13 4-13	35 155 266 67	55 - 29 49 57	6 6 1 6 2 6	140 215 122 156	139 226 116 15J
-2 8	241 310 86	267 314 94 220		24 176 68 285 24 444 58 530	-5 -1 -6 -1 -7 -1 -8 -1	280 278 51 29 185 199 45 55	2-12 3-12 4-12 5-12	205 223 133 157 39 61 183 203	-5 4 -6 4 -7 4 -8 4	136 121 261 272 87 111 99 112	J -9 4 -9 5 -9 6 -9	277 2 136 1 245 2 35 1	79 - 48 - 11 - 56 -	1 1 4 2 1 1 3 1 4 4 1 4	13 430 173 175 44 396 13 390	-1 -6	470 141 389 155	426 132 394 148	-1 14 -5 14 3-14 4-14	145 134 34 49 135 118 183 184	197	5 255	254	5-13 6-13 -1 14 d-14	101 62 69 137	02 74 90 -	36 55 -16 -26	140 77 121 192	120 76 126 179 207
-7 6	1 1 3 3 2 8 1 1 6 4 1 1 7	15: 308 20: 116	6 4 5 6 4	75 268 95 210 59 37 17 114	0 -2	60 67 208 207 484 469 110 73	7-12 8-12 -1-12 -2-12	114 143 83 88 185 193 64 75	-9 4 1 -4 3 -4	84 102 443 431 506 500 360 340	7 -9 9 -9 -1 -9	160 J 71	48 - 79 - 46 -	5 1 6 1 1 0 -1 2 1 -1 4	53 64 182 213 104 220 125 420	-5-6 07 17 27	242 270 29	171 149 236 266 35	-14 .7-14 -4-14 -9-14 0 15	80 76 107 121 37 50 101 93	0	5 389 5 389 5 281 5 281	54 408 273 172	4-14 6-14 2-13 3-15	167 64 202 87	200 76 75 82	-0 0 -7 6 -8 6	194 157 65 120	199 158 69 138
	79 165 67	68 186 87 62	-2 4 2	78 507 102 196 102 295 161 470	4 -2 5 -2 6 -2 7 -1	425 396 194 177 176 196 164 168	-4-12 -5-12 -6-12 0-13	31 60 57 79 79 80 195 181	5 -4 6 -4 7 -4	190 183 266 269 29 39 92 83	-3 -9 -8 -9 -5 -9	380 44 19 133 14 117 14	45 14 23 27	3 -1 4 4 -1 1 5 -1 1 6 -1 8	462 451 468 234 123 126 122 223	4 7 5 7 6 7 7 7	100 106 39 73	173 115 42 84	2-15 3-15 4-15 5+15	154 153 57 56 137 127 131 119	4 - 5 - 7 -	5 339 5 106 5 137 5 103	323 100 140 118	4-15 5-15 2-16 3-16	107	41	0 -6	283 2 94 496 4 131	294 52 480 131
-2 5	2316 231 211 123 277	313 239 226 133 289	-3 4 2	37 160 887 295 75 97 104 142 92 131	9 -2 -1 -2 -2 -2 -3 -2 -4 -2	54 60 716 753 166 166 452 425 438 442	1-13 5-13 6-13 -2-13 -3-13	239 253 123 142 134 159 170 166 76 73	9 -4 -1 -4 -2 -4 -3 -4	63 68 188 187 247 282 242 185 356 331	2 10 2 10 1 10	77 (188 10 63 (183 1) 38 (91 - 71 - 57 -	9 -1 1 -1 2 2 -1 4 3 -1	77 85 32 65 43 198 25 416 41 20	-2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	339 64 298 233 31	330 65 308 229 32	-3-19 -4-15 2-16 3-16 5-16	23 43 62 56 134 127 89 92	-2 -	+37 206 430 103	448 232 325 92	3-17 4-17 H	100 139 391	97 16 16	5 -6 -6 -6 -1 -6	186 113 50	163 120 66 389
1 10	85 173 79 126	74 164 49 126	0 5	95 182 92 594 869 360 869 360	-5 -2 -6 -2 -7 -2	28 13 263 264 121 133 55 52	-4-13 -5-13 0-14	65 81 98 96 39 44 204 200	-9 -4	249 209 84 97 25 52 274 268	-1 10 -1 10	128 11 88 254 24 213 24	19 - 79 - 42 - 20 -	5 -1 3 6 -1 0 2 1	60 525 66 70 60 172	-6 7	189 96 96 87	196	-2-16 -3-16 3-17 4-17	84 94 51 42 77 76 135 96	0 1 2 0 3 0	6 315 6 37 6 132 6 132	308 49 126 149	1 2 3 4 5	122 260 110 182	89 - 26 - 12 - 97		104 336 159 170	104 372 164 162
5 14 7 10 -1 14 -2 10	288 288 78	159 71 297 85 215	5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	19 17 57 135 51 60 64 401	-9 -2 0 -3 1 -3 2 -3	63 75 628 624 295 305 196 209 226 224	4-14 7-14 -1-14 -2-14	112 135 53 66 163 146 99 109 60 55	1 5 5 5 5 5 5 5 5	530 529 28 11 261 259 215 210 28 24	-4 10 -5 10 -6 10 -8 10	211 20 141 12 191 13 97 11 288 21	20 1 95 1 10 4	2 2 1 2 2 1 3 2 2 4 2 1 5 2 1	27 114 282 284 175 174 107 101	0 -7 1 -7 2 -7 3 -7 4 -7	422 50 379 128	431 47 351	-1-17 0-18 -1-18	83 97 84 97 83 71 90 86 4	-1 0 -2 0	34 143 248 276	47 177 223 271	67 1 2	42 77 316 196 1	77 78 05 78 -	12 4 7	117 169 104 231	124 162 89 221
-3 10 -4 10 -5 11 -6 11	230 149 0 98 0 174 0 54	178 103 168 82	-3 5 -4 5 -9 5	205 201 27 436 213 226 164 175	4 -3 6 -3 7 -3	116 125 355 353 78 71 162 106	-4-14 0-15 5-15	116 119 145 141 143 154 119 122	6 5 7 5 -1 5	156 155 23 38 56 65 422 396	1-10 2-10 3-10 4-10	283 24 96 367 36 143 14	63 97 52 -	6 2 1 8 2 1 2 6	47 61 47 61 00 347 01 563	5 -7 6 -7 8 -7 9 -7	186 228 107 42	218 110 45	0 0 0 2 0 0 4 0	436 425 358 332 329 286 95 87	-5 0	6 191 5 165 5 31 6 121 6 343	183 161 70 141 334	-3 0 0 1	350 3 85 229 2 74 363 3	64 - 36 - 62 -	6 7 7 7 8 7	454 8 193 8 62 47 345 8	237 190 89 324
0 1 1 1 2 1 2 1	89 244 1 100 1 108	90 239 126 105	-7 9 -9 5 0 6	165 174 104 146 549 557 262 254	-2 -3 -2 -3 -2 -3	104 103 92 115 232 221 575 446	-3-15 -4-15 0-16 1-16	127 132 39 44 115 95 92 92	-2 5 5 5	436 405 102 98 422 401 200 196	5-10 6-10 8-10	154 14 156 14 139 12 20 4	41 -: 46 -: 23 -! 45 -:	3 2 3 4 1 3 5 2 2 6 2	933 304 11 265 175 273 87 85	-1 -7 -2 -7 -3 -7 -4 -7	247 483 5 265 2 80	291 68	5 0 0 0 - L	78 102 74 82 77 169	- 4 4	24 349 157	16 345 149	2 1	249 1 94 234 2	48 80 26	1 -7 2 -7 3 -7	77 310	250 75 301

TABLE I

gen and carbon. The contributions to the leastsquares sums were weighted by $1/\sigma^2$, where σ , the standard deviation of each structure factor, was computed by a variation of the method of Smith and Alexander,⁸ which includes the contribution of each correction factor, such as background measurements, calculation of integrated intensities from peak heights, and correc-(8) G. S. Smith and L. A. Alexander, *Acta Cryst.*, **16**, 462 (1963).

														_																			
K L FO	FC	K L . F0	Fel	K L	# 0	pre	K L	۴D	rc	ĸĻ	۳o	re	ĸĻ	FQ	}rc]	ĸL	۴o	100	K L	FO	rc	ĸı	FO	FC	κ.	F0	FC	K L	FD	rc	K L	FO	FC
H 5 4 -7 61 5 -7 154 6 -7 117 7 -7 46 8 -7 91	55 156 98 33	1-10 252 2-10 85 3-10 258 5-10 193 6-10 152	224 77 269 187 145	5 0 -1 0 -2 0 -3 0 -4 0	136 387 63 392 109	138 370 68 J35 110		110 236 195 313 54	128 220 180 332 53	0 -5 2 -5 3 -5 4 -5	56 313 129 183 220	28 321 139 185 224	-5 8 0 -8 1 -9 2 -8 3 -0	142 143 247 126 120	165 146 258 140 118	4-15 5-15 2-16 3-16 3-17	103 59 101 98	102 76 99 110 93	-2 3 -3 3 -4 3 -5 3 -6 3	86 432 92 125 104	89 261 104 149 140	-2 6 -3 6 -4 6 -5 6	96 184 70 166 125	95 189 66 173 135	3-14 4-14 2-15 2-16	109 97 118 93	93 120 100	2 -4 3 -4 5 -4 0 5	90 169 61 106 108	103 176 54 120 139	-3 1 1 -1 2 -1 3 -1 0 2	64 104 86 109 131	80 118 84 122 151
-1 -7 34 -2 -7 304 -3 -7 151	25 343 184	-2-10 300 -3-10 137 0 11 54	282 161 51	01	87 293 214 84	68 305 214 83	-5 3 -6 3 -8 3	199 166 145 326	212 178 164 317	6 -5 7 -5 -1 -5 -2 -5	84 54 319 193	84 56 316 224	4 -8 6 -9 7 -8 -1 -8	197 118 73 267	193 122 78 257	0 0 2 0 3 0	214 205 74	236 201 82	0 -3 1 -3 2 -3 3 -3	215 87 200 96	229 88 222 93	0 -6 2 -6 3 -6	301 80 236 76	322 94 248 71	2030	202 149 54 59	230 161 53 90	-2 5 -3 5 -4 5	90 146 62 89	92 174 85 114	-1 2 -2 2 -3 2	86 40 165 98	114 21 185 119
8 47 1 8 186 3 8 113	68 175 123	-1 11 1v2 -4 11 92 -5 11 77	98 104 89	4 1 6 1 -1 1	216 88 354 267	202 74 360 229	i -3 2 -3 3 -3 4 -3	85 240 167 139	76 25) 174 136	-3 -5	158 486 236 31	184 367 211 46	-2 -8 -3 -8 0 9 2 9	174 71 166 90	188 98 154 95	-1 0 -2 0	93 82 310 52	97 392 59	* -3 5 -3 -1 -3 -2 -3	78 119 170 182	81 134 216 152	4 -6 5 -6 -1 -6 -2 -6	126 112 231 30	151 117 236 26	1 1 2 1 3 1 4 1	197 110 43 102	225 132 47 101	-5 5 1 -5 2 -5 3 -5	123 239 68 103	152 261 90 110	-4 2 1 -2 2 -2 3 -2	75 173 64 95	87 404 66 92
4 8 222 5 8 168 -7 8 83	212 165 124	1-11 275 2-11 99 3-11 222	204 204 216	-3 L -4 L 0 -1	214 291 318 242	204 305 313 247	5 -3 7 -3 -1 -3 -2 -3	145 645 276 107	99 298 100	2 6 3 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4	171 77 37 126	167 93 35 129	-1 9 -3 9 -5 9	80 142 144 188	90 152 152 195		85 243 172 66	77 264 191 67	-3 -3	286 166 93 31	263 167 107 60	1 7 2 7 -3 7 -4 7	91 87 113 166	90 129 176	-2 1 -3 1 J -1	187 98 92 158	205 124 105 161	4 -5 0 6 -2 6 -3 6	165 137 50 137	179 144 62 154	• 3 -1 3 -2 3 •3 3	123 116 43 163	134 135 39 180
1 -8 327 2 -8 249 3 -8 87	337 228 80	5-11 24 6-11 126 7-11 63	25 124 09 313	2 -1 3 -1 4 -1	118 202 97	111 205 97	-3 -3	455 194 227 186	393 169 224 174	-3 6 -4 6 -5 6	232 44 203 151	241 45 208 148	1 -9 2 -9 3 -9 4 -9	143 234 91 175	130 223 102 169	4 1 -1 1 -2 1 -3 1	126 232 164 140	128 243 168 138	-2 • -3 •	108 12∡ 75 208	116 126 103 231	0 -7 1 -7 2 -7 3 -7	304 171 135 222	298 172 151 223	2 -1 3 -1 0 2 1 2	30 144 165 136	50 153 192 151	1 -6 2 -6 3 -6 4 -6	93 209 40 122	217 51 137	1 -3 2 -3 3 -3	79 174 28 81	91 191 44 104
6 -5 158 7 -8 96 8 -8 42	159 94 24	-2-11 195 0 12 103 -1 12 39	182	6 -1 -1 -1 -2 -1 -3 -1	90 94 398 224	91 76 394 608		645 147 26 256	55 159 53 273	-7 6 0 -6 1 -6 2 -6	43 232 104 275	62 231 99 284	5 -9 7 -9 -1 -9 -2 -9	151 82 271 39	156 77 237 54	0 -1 1 -1 2 -1 3 -1	241 163 55 162	258 161 50 171	-5 4	48 131 91 225	45 153 113 465	4 -7 5 -7 6 -7 -1 -7	23 93 85 90	+8 101 84 9	2 2 2 2 -1 2 2 2-	30 105 68 177	36 125 48 203	5 -6 1 -7 2 -7 3 -7	124 96 172 178	137 117 184 201	2 -4	106 128 160 40	113 149 200
-2 -8 180	192	2-12 24y 3-12 87 4-12 136	252 78	0 2	60 305 296	85 318 264	-3 4	139 207 221	1 30 207 245	3 - 6 4 - 8 5 - 6 7 - 6	76 161 119	71 164 115 108	0 10	28 65 176 101	57 63 173 118	5 -1 0 -1 -1 -1 -2 -1	101 56 J7 298	107 70 17 323	2 -4	101 101 142	154 103 194 96	0 8 1 8 -4 8 1 -8	85 89 116 254	104 87 128 256	-3 2	81 114 179 169	111 124 103 106	5 -7 1 -8 2 -8 3 -8	108 250 24	114 274 36 156	3 -5 4 -3 1 -6 4 -0	90 92 04	102
1 9 61 2 9 109 3 9 91	44	7-12 69 2-13 167 3-13 260	91 165 229	3 2 2	244 60 116	244 60 111	-7 4	124 46 309	140 51 321	-1 -6	347 63 271	337 72 314	0-10 1-10 2-10	282	275	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	236 196 52	247 205 38	5 -4 6 -4 -1 -4	121 76 110 265	137 89 94 315	2 -8 3 -8 4 -8 6 -8	119 140 189	132 149 187 92	2 -2 3 -2 4 -2	122 92 95	127 104 119	4 -8 2 -9 3 -9	139 192 24	147 202 18	4 -6 1 -7 2 -7	9∉ 82 95	111 99 130
-1 9 64 -3 9 187 -5 9 154 -6 9 84	106 165 92	5-13 114 6-13 71 2-14 100	1∠2 75 66	-1 2 2 -3 2	49 351 115	63 372 122	3 -4	297	144 301 63	0 1 7 7 7 2 2	44 126 118	43	6-10 2-11	165	170	2 2 2 2	41 62 248	67 75 260		135	140	-1 9	58 128 257	60 142 254	2 3 3 -1 3 3	110 68 97	151 73 135 86	2-10	80 134 125	98 143 144	1 -8 3 -8 2 -9	145	186
-7 9 46 0 -9 249 1 -9 70 2 -9 280	67 226 61 273	4-14 150 6-14 114 2-15 194	142 99 170	-5 2	227 46 299	246 26 314	0 -4	102 278	104 92 308	-3 7	182 215 175	180 219 174	4-11 6-11 -1 11	176 98 76	105 82	-4 2	116 190 29	204	-2 5	119 183 86	134 194 89	2-10	135	136 130 96	-3 3	154	189 101 125	2-11 3-11 4-11	48 102 91	65 128 102	2-10 3-10 3-11	104 79 67	113
3 -9 110 4 -9 206 5 -9 214 7 -9 113	201 211 100	3-15 22 4-15 116 5-15 100 2-16 89	43 43 43	3 -2	191	72 197 32	-4 -4	208	190 172 225	0 =7 3 =7 2 =7	339 156 106	330 163 107	3-12 4-12 5-12	44	45 137 108	2 -2	197 93 73	210 110 82	-9 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	195 39 262	212	4-10 5-10 6-10	21 136 81	30 141 93	2 - 3	58 204 75	81 228 85	4-12 2-13 3-13	117 86 97	121 106 117	1 -3	10 61 60	95 79
-1 -9 296 -2 -9 99 -3 -9 224 0 10 89	271 89 255 76	3-15 123 5-16 100 3-17 95 4-17 116	98 98 106	7 -4 -1 -2 -2 -2	72 424 368	76 445 317	3 5	152 75 49	151 75 40	5 -7 6 -7 7 -7	96 103 38	103 96 39	2-13 3-13 5-13	129	143 183 97	6 -2 -1 -2 -2 -2	56 320 281	78 337 261	3 -5	108	124 210	3-11 4-11 2-12	108	111	5 -3	108 33 103	103	2-15	66 9 147	104	1 -6 1 -7 1 -8	54 104	7¥ 71
1 10 62 2 10 99 -1 10 191 -4 10 123	89 111 198 124	H 6 0 0 281 1 0 55 2 0 270	282 46 276	-3 -2 -4 -2 0 0 2 0	49 213 231 238	58 228 236 244	-2 - 5 - 5	240 40 204 229	230 51 207 233	-2 -7 -3 -7 0 8 1 8	235 133 124 137	177 121 125	2-14 J-14 4-14	37 122 108	58 110 120	2 3	30	42	-1 -5	277 123 150	270 171 165	4-12 5-12 2-13	141 95 115	145 103 131	-2 4	94 54 160	109 73 168	201121	116 197 57	138			
-6 10 115 0-10 311	132	3 0 153	156	3 3	149	142	-6 5	152	174	38	83 159	99	2-15	27	165	-1 3	154	1 56	36	103	70	5-13	137	141	1 -4	121	139	-1 1 -2 1	104	125			

TABLE I (Continued)

tions for instrumental variations, to the error. Unobserved reflections were omitted from the refinements. Poor agreement for the $40\overline{8}$ reflection indicated an error of measurement, and this reflection was discarded. During the last cycle of refinement the ytterbium scattering factors were corrected for anomalous dispersion using values of $\Delta f'$ and $\Delta f''$ from the compilation of Templeton.⁹ The final value of the residual, $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$, was 0.080 for 2624 observed data. Before the anomalous dispersion correction, R was 0.083. The mean positional parameter shift during the last cycle was 0.00041. The standard deviation of an observation of unit weight was 1.49. No attempt was made to locate hydrogen atoms.

The magnitudes of the observed and calculated structure factors are listed in Table I, and the atomic parameters are listed in Table II.

Discussion of the Structure

The projection of the structure along [100] is shown in Figure 1. The bond lengths and angles are listed in Table III; the standard deviations were computed by the method of Sands.¹⁰ Figure 2 shows the average dimensions of an ytterbium acetylacetonate ring.

Each ytterbium atom is bonded to one water molecule, O(1), and to six carbonyl oxygen atoms, donated by three bidentate acetylacetonate groups. The ring dimensions compare favorably with the average found by Lingafelter and Braun¹¹ in a study of acetylacetonate chelate structural data; the average bite of the rings is 2.750 Å as compared with their average value of 2.781 Å.

The mean deviations of the carbon and oxygen atoms from the least-squares planes of the acetylacetonate groups are 0.134, 0.004, and 0.017 Å for the rings containing O(2)-O(3), O(4)-O(5), and O(6)-O(7), respec-

TABLE II Atomic Parameters of $Yb(C_6H_7O_2)_3(H_2O) \cdot 0.5C_6H_6$

WITH ESTIMATED STANDARD DEVIATIONS

	×	Y	۷	8 • A
YB	0.01210(10)	0.19206(11)	0.16134(6)	م
0(1)	-0.0783(14)	-0.0645(13)	0.01780(7)	3.7(3)
0(2)	-0.1401(14)	0.1107(14)	0.24257(8)	4.0(3)
0(3)	0.1569(15)	0.0281(14)	0.25144(8)	4.7(3)
0(4)	0.2164(16)	0.3661(15)	0.25890(8)	4.7(3)
0(5)	0.2144(16)	0.1760(13)	0.10083(7)	3.7(3)
0(6)	-0.1083(14)	0.2332(14)	0.01718(8)	4.1(3)
0(7)	-0.1134(15)	0.4090(15)	0+17292(8)	4.8(3)
CA(1)	0.2624(28)	0.0341(27)	0.3536(15)	7+1(6)
CA(2)	0.1257(24)	0.0421(23)	0,3118(13)	4.6(5)
CA(3)	0.0130(23)	+0.0231(22)	0.3576(12)	4.1(4)
CA(4)	0.1455(25)	-0.0319(24)	0.3215(14)	5.2(5)
CA(5)	0+2937(29)	-0.1168(27)	0.3726(15)	7+5(6)
CA(6)	0.4686(26)	0.4780(26)	0.3715(14)	6.3(6)
CA(7)	0.3677(27)	0.3799(25)	0.2829(14)	5.6(5)
CA(B)	0.4519(25)	0.3118(25)	0.2325(14)	5.6(5)
CA(9)	0.3730(23)	0.2112(21)	0+1418(12)	3.9(4)
CA(10)	0.4700(26)	0.1321(25)	0.0821(14)	6.2(6)
CA(11)	-0.2485(24)	0.3125(23)	-0.1261(13)	5.3(5)
CA(12)	-0.1980(23)	0.3413(23)	-0.0210(13)	4.5(4)
CA(13)	-0.2427(23)	0.4634(23)	0.0250(13)	4.6(4)
CA(14)	-0.2013(23)	0.4910(22)	0.1176(13)	4.3(4)
CA(15)	-0+2649(24)	0.6289(23)	0.1655(13)	5.1(5)
CB(1)	0.0097(38)	0.4792(38)	0.4124(19)	9.6(8)
CB(2-)	0.0986(35)	0.3906(34)	0.4678(23)	9.4(8)
CB(3)	0.0886(33)	0.4008(32)	0.5553(20)	9+6(8)
as (3 ¹¹ = 0	0.00840(15),	g ²² =0.01615()	(8), (3 ³³ =0.00	439(5)
(B ¹² =0	0.00462(12)	013 =0.00241 (*	7). β ²³ =0.00	227(7)

tively. The respective deviations of the ytterbium atom from each of these planes are 0.13 ± 0.14 , $0.554 \pm$ 0.002, and 0.02 ± 0.01 Å. The metal-chelate ring containing O(6)-O(7) is planar; the sum of the interior angles of this ring is 720.0°, which is the value required for planarity. The sum of the interior angles for the ring containing O(2)-O(3) is 718.0°; this ring is folded by 6.5° about the O(2)-O(3) line away from the water molecule. The sum of the interior angles for the O(4)-O(5) ring is 713.5°, and this ring is folded by 18.5° about the O(4)-O(5) line away from O(6)-O(7) toward O(2)-O(3).

The tris(acetylacetonato)aquoytterbium(III) molecules are linked in pairs by hydrogen bonds of length

⁽⁹⁾ See ref 7, p 216.

⁽¹⁰⁾ D. E. Sands, Acta Cryst., 21, 868 (1966).

⁽¹¹⁾ E. C. Lingafelter and R. L. Braun, J. Am. Chem. Soc., 88, 2951 (1966).

Figure 1.—Projection of a molecule along [100]. The primed and unprimed atoms are related by a center of symmetry.

TABLE III Bond Lengths and Angles, Chemically Equivalent Distances Being Grouped Together

Lengths, A^A

Yb-0(1)	2.347(11)	CA(4) = CA(3) CA(2) = CA(3)	1.44(2) 1.37(3)
Yb-0(2)	2.204(12)	CA(9)-CA(8)	1.49(2)
Yb-0(3)	2.278(13)	CA(12)-CA(13)	1.35(2)
Yb-0(4)	2.231(12)	CA(14)-CA(13)	1.37(2)
Yb-0(5)	2.252(11)		
Yb-0(6)	2.258(12)	CA(2)-CA(1)	1.53(3)
YD-0(7)	2.250(13)	CA(4) - CA(5)	1.58(3)
		CA(7) = CA(6)	1.50(3)
O(2)-CA(2)	1.24(2)	CA(9)-CA(10)	1.58(3)
0(3)-CA(4)	1.28(2)	CA(12)-CA(11)	1.55(2)
0(4)-CA(7)	1.25(2)	CA(14)-CA(15)	1.56(3)
0(5)-CA(9)	1.32(2)		
0(6)-CA(12)	1.34(2)	CB(1)=CB(2)	1.33(3)
0(7)-CA(14)	1.28(2)	CB(2)-CB(3)	1.39(3)
		CB(3)-CB(1)'	1.54(3)
CA(2)-CA(3)	1.41(2)		

	Angles, degrees		
0(2)-Yb-0(3) 0(4)-Yb-0(5) 0(6)-Yb-0(7)	74.8(4) 77.2(4) 74.5(4)	O(4)-CA(7)-CA(6) O(5)-CA(9)-CA(10) O(6)-CA(12)-CA(11) O(7)-CA(14)-CA(15)	120.4(21) 111.0(15) 112.6(17) 113.5(17)
Yb-O(2)-CA(2) Yb-O(3)-CA(4) Yb-O(4)-CA(7) Yb-O(5)-CA(9) Yb-O(6)-CA(12) Yb-O(7)-CA(14)	138.2(13) 133.9(14) 135.2(14) 128.5(11) 134.7(12) 136.2(13)	CA(1)-CA(2)-CA(3) CA(5)-CA(4)-CA(3) CA(5)-CA(7)-CA(8) CA(10)-CA(9)-CA(8) CA(11)-CA(12)-CA(13) CA(12)-CA(12)-CA(13)	115.1(18) 119.0(19) 115.6(21) 124.0(17) 122.4(19) 120.8(18)
0(2)-CA(2)-CA(3) 0(3)-CA(4)-CA(3) 0(4)-CA(7)-CA(8) 0(5)-CA(9)-CA(8) 0(6)-CA(12)-CA(13)	125.4(19) 125.1(20) 124.0(21) 125.0(17) 125.0(18)	CA(15)-CA(14)-CA(15) CA(2)-CA(3)-CA(4) CA(7)-CA(8)-CA(9) CA(12)-CA(13)-CA(14)	120.6(18) 123.5(20) 123.8(20)
0(7)-CA(14)-CA(13) 0(2)-CA(2)-CA(1) 0(3)-CA(4)-CA(5)	125.7(19) 119.4(19) 115.9(19)	CB(3)'-CB(1)-CB(2) CB(1)-CB(2)-CB(3) CB(2)-CB(3)-CB(1)'	122.1(27) 117.0(30) 120.7(26)

^aPrimed and unprimed atoms are related by a center of symmetry.

O(1)-O(5)' = O(1)'-O(5) = 2.66 Å, where the primes indicate atoms related to the unprimed atoms by the center of symmetry at 0, 0, 0. The distance between water molecules is O(1)-O(1)' = 3.27 Å. The closest contact between pairs of molecules is 3.60 Å between O(2) and the CA(10) methyl group in the molecule generated by a lattice translation along a.

The coordination polyhedron formed by the seven oxygen atoms around an ytterbium atom is a capped trigonal prism (Figure 3), with O(3) capping the face O(1)-O(2)-O(4)-O(5). The dimensions of the co-

Figure 2.—Average dimensions of a ring in $Yb(C_5H_7O_2)_3(H_2O) \cdot 0.5C_6H_6$.

Figure 3.—Coordination polyhedron formed by the seven oxygen atoms bonded to the ytterbium atom. The distance of each atom from the central plane is given. The view is along a vector 30° from Yb-O(6) in the Yb-O(6)-O(7) plane.

TADLE IV

IABLE IV						
DIMENSIONS OF	COORDINATION POLYHEDRON					
	LENGTHS, A ^a					
0 (1)-0 (2) 0 (1)-0 (3) 0 (1)-0 (5) 0 (1)-0 (6) 0 (4)-0 (2) 0 (4)-0 (3) 0 (4)-0 (5) 0 (4)-0 (6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c} \text{All}\\ (2) - 0 & (2) - 0 & (3) \\ (2) - 0 & (3) - 0 & (4) \\ (2) - 0 & (3) - 0 & (5) \\ (4) - 0 & (3) - 0 & (5) \\ (3) - 0 & (5) - 0 & (4) \\ (3) - 0 & (5) - 0 & (4) \\ (3) - 0 & (5) - 0 & (6) \\ (4) - 0 & (5) - 0 & (6) \\ (4) - 0 & (5) - 0 & (6) \\ (4) - 0 & (7) - 0 & (6) \\ (7) - 0 & (6) - 0 & (4) \\ (7) - 0 & (6) - 0 & (4) \\ (7) - 0 & (4) - 0 & (6) \\ (7) - 0 & (2) - 0 & (4) \\ (7) - 0 & (2) - 0 & (4) \\ (7) - 0 & (2) - 0 & (4) \\ (7) - 0 & (4) - 0 & (2) \\ \end{array}$	$\begin{array}{cccc} {\sf NGLES,} & {\sf DEGREES}^{\sf b} \\ 52.0 & 0 & (1) - 0 & (2) - 0 & (3) & 58.6 \\ 78.5 & 0 & (2) - 0 & (3) - 0 & (1) & 67.2 \\ 84.2 & 0 & (2) - 0 & (1) - 0 & (3) & 54.2 \\ 58.2 & 0 & (1) - 0 & (3) - 0 & (5) & 62.0 \\ 94.2 & 0 & (3) - 0 & (5) - 0 & (1) & 58.0 \\ 62.6 & 0 & (3) - 0 & (1) - 0 & (5) & 59.9 \\ 88.5 & 0 & (1) - 0 & (5) - 0 & (1) & 54.2 \\ 46.2 & 0 & (5) - 0 & (1) - 0 & (6) & 59.0 \\ 89.4 & 0 & (1) - 0 & (2) - 0 & (6) & 54.3 \\ 46.2 & 0 & (2) - 0 & (6) - 0 & (1) & 52.7 \\ 46.7 & 0 & (2) - 0 & (6) - 0 & (1) & 52.7 \\ 46.7 & 0 & (2) - 0 & (6) - 0 & (1) & 52.7 \\ 52.0 & 0 & (6) - 0 & (7) - 0 & (2) & 87.1 \\ 52.1 & 0 & (6) - 0 & (7) - 0 & (2) & 87.1 \\ \end{array}$					
 a) STANDARD D b) STANDARD D 	EVIATION = 0.02 A. EVIATIONS ARE 0.3° to 0.5° .					

ordination polyhedron are given in Table IV. This polyhedron is identical, within experimental error, with the polyhedron found about Yb(1) in the un-

solvated $Yb(C_5H_7O_2)_8(H_2O)$ structure,³ and confidence in the reality of such features of the polyhedron as the deviations of the ytterbium atom from the mean planes of the ligands may be obtained by comparing the two structures.

The benzene molecule is centered on the center of symmetry at 0, 1/2, 1/2. The mean deviation of the carbon atoms from the mean plane of the benzene ring is 0.019 Å, and the sum of the interior angles of the ring is 719.6°. Discrepancies in the carbon-carbon bond lengths (Table III) of several standard deviations must be interpreted as indicative of systematic errors in the data, such as uncorrected adsorption, rather

than as implying any actual distortion of the molecule. The shortest distance between a benzene carbon atom and another carbon or oxygen atom is 3.53 Å for the CB(1)–O(4) contact.

The volume occupied by two tris(acetylacetonato)aquoytterbium(III) molecules in the unsolvated structure³ is 931.8 Å³. The molecular volume of benzene, based on the density of the liquid at 25°, is 147.6 Å³. The sum of these volumes is 1079.4 Å³, as compared with a unit cell volume of 1077.9 Å³ in the crystal structure of the benzene solvate. These figures suggest that the efficiency of packing of the molecules is about the same for the solvated and unsolvated structures.

CONTRIBUTION FROM THE LOS ALAMOS SCIENTIFIC LABORATORY, UNIVERSITY OF CALIFORNIA, LOS ALAMOS, NEW MEXICO 87544

The Crystal Structure of Ammonium Hexafluorocerate(IV), $(NH_4)_2CeF_6^{-1}$

BY ROBERT R. RYAN, ALLEN C. LARSON, AND F. H. KRUSE

Received June 5, 1968

The crystal structure of ammonium hexafluorocerate(IV), $(NH_4)_2CeF_6$, has been determined from counter measurements of 561 reflections and refined by full-matrix least squares to an *R* factor of 0.032. The space group is Pben (no. 60); $D_x = 3.05$ and $D_m = 3.05 \pm 0.02$ g/cm³. The unit cell has dimensions a = 7.026 (3), b = 12.098 (6), and c = 7.439 (8) Å; Z = 4. Of the 561 reflections measured, 389 were judged to be observed. The structure consists of infinite chains of eightfold coordinated cerium atoms parallel to the *c* axis, joined by NH₄⁺ ions. The fluorine configuration about the Ce can be roughly described as a square antiprism. The average Ce–F distance is 2.26 Å and the average F–F distance for nearest neighbors within an antiprism is 2.77 Å. Hydrogen bonding causes this particular structure to be stabilized over the trigonal-dodeca-hedral arrangement found in the similar Rb₂UF₆ and K₂ZrF₆ compounds.

Introduction

The preparation of ammonium hexafluorocerate(IV) was first reported by Besse and Capestan,² who indexed the powder pattern on the basis of a cubic cell with a' = 10.52 Å and claimed a measured density of 3.27 g/cm^3 . For Z = 8, $D_x = 3.31 \text{ g/cm}^3$ for this cell. Penneman³ of this laboratory noticed that these values for the volume and Z give a very low value for the fluorine volume, as compared to similar actinide fluoride compounds. Further, there is no evidence for cubic phases of any other 2:1 NH_4F -actinide(IV) fluoride complexes. He was therefore prompted to prepare this material. Optical examination showed single crystals of $(NH_4)_2CeF_6$ to be biaxial and thus this compound must have orthorhombic or lower symmetry. Subsequent examination of precession films showed the symmetry to be orthorhombic with cell dimensions which are nearly those which would permit indexing of powder data on the basis of the cubic cell of Besse and Capestan,² *i.e.*, $a'/a = \frac{3}{2}$, $a'/b = \sqrt{3}/2$, and $a'/c = \sqrt{2}$.

The single-crystal X-ray investigation of this compound was undertaken for three reasons: (1) No

compound of known structure could be found with which it is isostructural. (2) Comparison of the powder patterns indicated it is isostructural with the α phase of $(NH_4)_2UF_6$ for which no single crystals were then available. (Subsequent comparisons of singlecrystal data, when they became available, confirmed that the two compounds were indeed isostructural. This is of interest because of the existence of four closely related polymorphs for $(NH_4)_2UF_6$ over a narrow temperature range⁴ ($\sim 70^{\circ}$), and the elucidation of these structures should provide information concerning the energy relationships between some of the possible coordination polyhedra for uranium.) (3) It is also of interest that after extensive investigation the only phase to be found for the Ce compound is the α phase. It is hoped that the knowledge of this structure plus the structure of the γ -(NH₄)₂UF₆ (room-temperature stable phase) compound currently being worked on will provide some information concerning these questions.

Experimental Section

Crystals were prepared by cooling a saturated solution of $(NH_4)_2CeF_6$ in a 15% NH_4F - H_2O solution. A needlelike crystal was selected and cut to a length suitable for examination by X-

This work was sponsored by the U. S. Atomic Energy Commission.
 J. P. Besse and M. Capestan, Bull. Soc. Chim. France, 577 (1966).

⁽³⁾ R. A. Penneman, unpublished results, to be submitted for publication.

⁽⁴⁾ R. A. Penneman, F. H. Kruse, R. S. George, and J. S. Coleman, *Inorg. Chem.*, **3**, 309 (1964).